Flow of Couple-Stress and Micropolar Immiscible Liquid Layers Between Permeable Beds with Entropy Generation

Document Type : Full Length Research Article

Authors

Department of Mathematics, VIT-AP, Guntur, 522237, India

Abstract

The study explores heat and mass transfer characteristics of micropolar and couple stress liquids under the influence of an inclined magnetic field between two permeable beds. Viscous and Darcy dissipations have been accounted for in this model. In this model, the flow is divided into three regions: Region-B contains a micropolar liquid, while Region-A and C are occupied by couple stress liquids. Liquid injection occurs through the lower bed, with extraction from the upper bed at the same velocity. The Beavers-Joseph slip boundary conditions govern the liquid-permeable bed interface. The equations that govern the flow are solved numerically using the RK-4th order method in conjunction with the shooting method in Mathematica. Graphical results have been presented to illustrate the effects of pertinent parameters on velocity, microrotation, temperature, concentration, Nusselt number, entropy generation, Bejan number, and stress distribution. Our results reveal that the flow is suppressed by the Hartmann number, slip, permeability, and frequency parameters. When the Brinkman number, inclination angle, and micropolar material parameter increase, the temperature distribution also rises. However, higher Schmidt and Soret numbers contribute to a decrease in concentration, whereas a greater diffusivity ratio results in a rise in concentration. Entropy generation rises with an increase in the Brinkman number but falls with the growth of the slip parameter. Furthermore, with the rise of the permeability parameter and Hartmann number, the Nusselt number decreases at the lower permeable bed, and it shows a reverse trend at the upper permeable bed. A comparative analysis of our results with those of Nikodijevic et al. [1] and Pramod et al. [2] shows excellent agreement.

Keywords

Main Subjects


©2025 The Author(s). Journal of Heat and Mass Transfer Research published by Semnan University Press.

This is an open access article under the CC-BY-NC 4.0 license. (https://creativecommons.org/licenses/by-nc/4.0/)

[1]   Nikodijević, D. D., Stamenković, Ž. M., Jovanović, M. M., Kocić, M. M., & Nikodijević, J. D., 2014. Flow and heat transfer of three immiscible fluids in the presence of uniform magnetic field. Thermal science, 18(3), pp. 1019-1028.  https://doi.org/10.2298/TSCI1403019N
[2]   Kumar Yadav, P., Jaiswal, S., Asim, T., & Mishra, R., 2018. Influence of a magnetic field on the flow of a micropolar fluid sandwiched between two Newtonian fluid layers through a porous medium. The European Physical Journal Plus133(7), 247. DOI 10.1140/epjp/i2018-12071-5
[3]   Wang, C. Y., 1971. Pulsatile flow in a porous channel. Journal of Applied Mechanics, pp. 553-555.  https://doi.org/10.1115/1.3408822
[4]   Radhakrishnamacharya, G., & Maiti, M. K., 1977. Heat transfer to pulsatile flow in a porous channel. International Journal of Heat and Mass Transfer, 20(2), pp. 171-173. https://doi.org/10.1016/0017-9310(77)90009-6
[5]   Li, B., Zheng, L., Zhang, X., & Ma, L., 2008. The multiple solutions of laminar flow in a uniformly porous channel with suction/injection. Advanced Studies in Theoretical Physics2(10), pp. 473-478.
[6]   Umavathi, J. C., Kumar, J. P., & Chamkha, A. J., 2009. Convective flow of two immiscible viscous and couple stress permeable fluids through a vertical channel. Turkish Journal of Engineering and Environmental Sciences, 33(4), pp. 221-243. doi:10.3906/muh-0905-29
[7]   Makinde, O. D., & Chinyoka, T., 2013. Numerical investigation of buoyancy effects on hydromagnetic unsteady flow through a porous channel with suction/injection. Journal of Mechanical Science and Technology, 27(5), pp. 1557-1568. DOI 10.1007/s12206-013-0221-9
[8]   Eegunjobi, A. S., & Makinde, O. D., 2012. Effects of Navier slip on entropy generation in a porous channel with suction/injection. Journal of Thermal Science and Technology, 7(4), pp. 522-535. DOI: 10.1299/jtst.7.522.
[9]   Srinivas, S., Malathy, T., & Reddy, A. S., 2016. A note on thermal-diffusion and chemical reaction effects on MHD pulsating flow in a porous channel with slip and convective boundary conditions. Journal of King Saud University-Engineering Sciences, 28(2), pp. 213-221. https://doi.org/10.1016/j.jksues.2014.03.011
[10] Srinivas, S., Kumar, C. K. K., & Reddy, A. S. S., 2018. Pulsating flow of Casson fluid in a porous channel with thermal radiation, chemical reaction and applied magnetic field. Nonlinear Analysis: Modelling and Control, 23(2), pp. 213-233.  https://doi.org/10.15388/NA.2018.2.5
[11] Umavathi, J. C., & Bég, O. A., 2020. Effects of thermophysical properties on heat transfer at the interface of two immiscible fluids in a vertical duct: Numerical study. International Journal of Heat and Mass Transfer, 154, 119613. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119613
[12] Padma Devi, M., & Srinivas, S., 2022. Thermal characteristics on two immiscible fluid flows in a porous space with time dependent pressure gradient. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 236(6), pp. 2480-2490. https://doi.org/10.1177/09544089221096569
[13] Goyal, K., & Srinivas, S., 2024. Pulsatile flow of immiscible ternary hybrid nanofluid in a corrugated curved channel. Numerical Heat Transfer, Part A: Applications, pp. 1-29. https://doi.org/10.1080/10407782.2024.2360090
[14] Trevisan, O. V., & Bejan, A., 1987. Combined heat and mass transfer by natural convection in a vertical enclosure.  The American Society of Mechanical Engineers, pp. 104-112. https://doi.org/10.1115/1.3248027
[15] Al-Amiri, A. M., Khanafer, K. M., & Pop, I., 2007. Numerical simulation of combined thermal and mass transport in a square lid-driven cavity. International journal of thermal sciences, 46(7), pp. 662-671. https://doi.org/10.1016/j.ijthermalsci.2006.10.003
[16] Umavathi, J. C., Kumar, J. P., & Sheremet, M. A., 2017. Heat and mass transfer in a vertical double passage channel filled with electrically conducting fluid. Physica A: Statistical Mechanics and its Applications, 465, pp. 195-216. https://doi.org/10.1016/j.physa.2016.07.073
[17] Cai, L., Mi, S., Luo, C., & Liu, Z., 2022. Numerical investigation on heat and mass transfer characteristics of ice slurry in pulsating flow. International Journal of Heat and Mass Transfer, 189, 122722. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122722
[18] Srinivas, J., & Ramana Murthy, J. V., 2016. Second law analysis of the flow of two immiscible micropolar fluids between two porous beds. Journal of Engineering thermophysics25(1), pp. 126-142. DOI: 10.1134/S1810232816010124
[19] Thamizharasan, T., & Reddy, A. S., 2022. Entropy Generation on Pulsatile Hydromagnetic Flow of Jeffrey Nanofluid in a Porous Channel with Brownian Motion, Thermophoresis, and Heat Source/Sink Using Cattaneo-Christov Heat Flux. Indian Journal of Pure & Applied Physics60(8). https://doi.org/10.56042/ijpap.v60i8.63440
[20] Yadav, P. K., & Yadav, N., 2023. Entropy generation analysis in micropolar-couple stress fluid’s flow in an inclined porous channel using Homotopy Analysis Method. Chinese Journal of Physics86, pp. 469-496. https://doi.org/10.1016/j.cjph.2023.10.024
[21] Padma Devi, M., Srinivas, S., & Vajravelu, K., 2024. Entropy generation in two-immiscible MHD flow of pulsating Casson fluid in a vertical porous space with Slip effects. Journal of Thermal Analysis and Calorimetry, 149(14), pp. 7449-7468.. https://doi.org/10.1007/s10973-024-13337-8  
[22] Goyal, K., & Srinivas, S., 2024. Pulsatile flow of Casson hybrid nanofluid between ternary-hybrid nanofluid and nanofluid in an inclined channel with temperature-dependent viscosity. Numerical Heat Transfer, Part A: Applications, pp. 1-30. https://doi.org/10.1080/10407782.2024.2314735
[23] Yadav, P. K., Jaiswal, S., Verma, A. K., & Chamkha, A. J., 2023. Magnetohydrodynamics of immiscible Newtonian fluids in porous regions of different variable permeability functions. Journal of Petroleum Science and Engineering220, 111113. https://doi.org/10.1016/j.petrol.2022.111113
[24] Vyas, P., Kasana, R.K. and Gajanand, 2025. Entropy generation in free convective micropolar couple stress regime in vertical channel. Numerical Heat Transfer, Part A: Applications, 86(10), pp.3033-3064. https://doi.org/10.1080/10407782.2023.2299283
[25] Jat, K., Sharma, K., Choudhary, P., & Soni, P. (2025). Entropy generation analysis of couple stress Casson fluid flow through non-permeable stretching channel. The European Physical Journal Special Topics, 1-20. https://doi.org/10.1140/epjs/s11734-025-01525-y
[26] Vaishnav, B. K., Choudhary, S., Choudhary, P., Jat, K., Loganathan, K., & Eswaramoorthi, S., 2025. Computational analysis of radiative micropolar fluid flow over a curved stretching sheet with viscous dissipation. Discover Applied Sciences, 7(5), 451. https://doi.org/10.1007/s42452-025-06983-6
[27] Loganathan, K., Choudhary, P., Eswaramoorthi, S., Senthilvadivu, K., & Jain, R., 2025. Irreversibility analysis of bioconvective Walters’ B nanofluid flow over an electromagnetic actuator with Cattaneo-Christov model. Discover Applied Sciences, 7(5), 463. https://doi.org/10.1007/s42452-025-06893-7
[28] Vajravelu, K., Sreenadh, S., & Arunachalam, P. V., 1992. Combined free and forced convection in an inclined channel with permeable boundaries. Journal of Mathematical analysis and Applications, 166(2), pp. 393-403. https://doi.org/10.1016/0022-247X(92)90306-X
[29] Vajravelu, K., Arunachalam, P. V., & Sreenadh, S., 1995. Unsteady flow of two immiscible conducting fluids between two permeable beds. Journal of mathematical analysis and applications, 196(3), pp. 1105-1116. https://doi.org/10.1006/jmaa.1995.1463
[30] Avinash, K., Rao, J. A., Sreenadh, S., & Kumar, Y. R., 2011. Pulsatile flow of a viscous stratified fluid of variable viscosity between permeable beds. Journal of Porous Media, 14(12). DOI: 10.1615/JPorMedia.v14.i12.60
[31] Iyengar, T. K. V., & Bitla, P., 2013. Pulsating flow of an incompressible micropolar fluid between permeable beds with an imposed uniform magnetic field. Journal of Porous Media, 16(4). DOI: 10.1615/JPorMedia.v16.i4.30
[32] Malathy, T., & Srinivas, S., 2008. Pulsating flow of a hydromagnetic fluid between permeable beds. International Communications in Heat and Mass Transfer, 35(5), pp. 681-688. https://doi.org/10.1016/j.icheatmasstransfer.2007.12.006
[33] Bitla, P., & Iyengar, T. K. V., 2014. Pulsating flow of an incompressible micropolar fluid between permeable beds with an inclined uniform magnetic field. European Journal of Mechanics-B/Fluids, 48, pp. 174-182. https://doi.org/10.1016/j.euromechflu.2014.06.002
[34] Kumar, D., & Agarwal, M., 2021. MHD pulsatile flow and heat transfer of two immiscible couple stress fluids between permeable beds. Kyungpook Mathematical Journal, 61(2), pp. 323-351. https://doi.org/10.5666/KMJ.2021.61.2.323
[35] Mukherjee, S., & Shit, G. C., 2022. Mathematical modeling of electrothermal couple stress nanofluid flow and entropy in a porous microchannel under injection process. Applied Mathematics and Computation, 426, 127110. https://doi.org/10.1016/j.amc.2022.127110
[36] Beavers, G. S., & Joseph, D. D., 1967. Boundary conditions at a naturally permeable wall. Journal of fluid mechanics, 30(1), pp. 197-207. https://doi.org/10.1017/S0022112067001375
[37] Stokes, V. K., 1984. Couple stresses in fluids. In Theories of fluids with microstructure: an introduction (pp. 34-80). Berlin, Heidelberg: Springer Berlin Heidelberg.
[38] Eringen, A. C., 1966. Theory of micropolar fluids. Journal of mathematics and Mechanics, pp. 1-18.
[39] Eringen, A. C., 2001. Microcontinuum field theories: II. Fluent media (Vol. 2). Springer Science & Business Media.
[40] Lukaszewicz, G., 2012. Micropolar fluids: theory and applications. Springer Science & Business Media.
[41] Stokes, V. K., 2012. Theories of fluids with microstructure: An introduction. Springer Science & Business Media.
[42] Goyal, K., & Srinivas, S., 2023. Entropy generation analysis for hydromagnetic two-layered pulsatile immiscible flow with Joule heating and first-order chemical reaction. Case Studies in Thermal Engineering, 47, 103046. https://doi.org/10.1016/j.csite.2023.103046