[1] Nikodijević, D. D., Stamenković, Ž. M., Jovanović, M. M., Kocić, M. M., & Nikodijević, J. D., 2014. Flow and heat transfer of three immiscible fluids in the presence of uniform magnetic field.
Thermal science,
18(3), pp. 1019-1028.
https://doi.org/10.2298/TSCI1403019N
[2] Kumar Yadav, P., Jaiswal, S., Asim, T., & Mishra, R., 2018. Influence of a magnetic field on the flow of a micropolar fluid sandwiched between two Newtonian fluid layers through a porous medium. The European Physical Journal Plus, 133(7), 247. DOI 10.1140/epjp/i2018-12071-5
[5] Li, B., Zheng, L., Zhang, X., & Ma, L., 2008. The multiple solutions of laminar flow in a uniformly porous channel with suction/injection. Advanced Studies in Theoretical Physics, 2(10), pp. 473-478.
[6] Umavathi, J. C., Kumar, J. P., & Chamkha, A. J., 2009. Convective flow of two immiscible viscous and couple stress permeable fluids through a vertical channel. Turkish Journal of Engineering and Environmental Sciences, 33(4), pp. 221-243. doi:10.3906/muh-0905-29
[7] Makinde, O. D., & Chinyoka, T., 2013. Numerical investigation of buoyancy effects on hydromagnetic unsteady flow through a porous channel with suction/injection. Journal of Mechanical Science and Technology, 27(5), pp. 1557-1568. DOI 10.1007/s12206-013-0221-9
[8] Eegunjobi, A. S., & Makinde, O. D., 2012. Effects of Navier slip on entropy generation in a porous channel with suction/injection. Journal of Thermal Science and Technology, 7(4), pp. 522-535. DOI: 10.1299/jtst.7.522.
[9] Srinivas, S., Malathy, T., & Reddy, A. S., 2016. A note on thermal-diffusion and chemical reaction effects on MHD pulsating flow in a porous channel with slip and convective boundary conditions.
Journal of King Saud University-Engineering Sciences,
28(2), pp. 213-221.
https://doi.org/10.1016/j.jksues.2014.03.011
[10] Srinivas, S., Kumar, C. K. K., & Reddy, A. S. S., 2018. Pulsating flow of Casson fluid in a porous channel with thermal radiation, chemical reaction and applied magnetic field.
Nonlinear Analysis: Modelling and Control,
23(2), pp. 213-233.
https://doi.org/10.15388/NA.2018.2.5
[11] Umavathi, J. C., & Bég, O. A., 2020. Effects of thermophysical properties on heat transfer at the interface of two immiscible fluids in a vertical duct: Numerical study.
International Journal of Heat and Mass Transfer,
154, 119613.
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119613
[12] Padma Devi, M., & Srinivas, S., 2022. Thermal characteristics on two immiscible fluid flows in a porous space with time dependent pressure gradient.
Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering,
236(6), pp. 2480-2490.
https://doi.org/10.1177/09544089221096569
[13] Goyal, K., & Srinivas, S., 2024. Pulsatile flow of immiscible ternary hybrid nanofluid in a corrugated curved channel.
Numerical Heat Transfer, Part A: Applications, pp. 1-29.
https://doi.org/10.1080/10407782.2024.2360090
[14] Trevisan, O. V., & Bejan, A., 1987. Combined heat and mass transfer by natural convection in a vertical enclosure.
The American Society of Mechanical Engineers, pp. 104-112.
https://doi.org/10.1115/1.3248027
[15] Al-Amiri, A. M., Khanafer, K. M., & Pop, I., 2007. Numerical simulation of combined thermal and mass transport in a square lid-driven cavity.
International journal of thermal sciences,
46(7), pp. 662-671.
https://doi.org/10.1016/j.ijthermalsci.2006.10.003
[16] Umavathi, J. C., Kumar, J. P., & Sheremet, M. A., 2017. Heat and mass transfer in a vertical double passage channel filled with electrically conducting fluid.
Physica A: Statistical Mechanics and its Applications,
465, pp. 195-216.
https://doi.org/10.1016/j.physa.2016.07.073
[17] Cai, L., Mi, S., Luo, C., & Liu, Z., 2022. Numerical investigation on heat and mass transfer characteristics of ice slurry in pulsating flow.
International Journal of Heat and Mass Transfer,
189, 122722.
https://doi.org/10.1016/j.ijheatmasstransfer.2022.122722
[18] Srinivas, J., & Ramana Murthy, J. V., 2016. Second law analysis of the flow of two immiscible micropolar fluids between two porous beds. Journal of Engineering thermophysics, 25(1), pp. 126-142. DOI: 10.1134/S1810232816010124
[19] Thamizharasan, T., & Reddy, A. S., 2022. Entropy Generation on Pulsatile Hydromagnetic Flow of Jeffrey Nanofluid in a Porous Channel with Brownian Motion, Thermophoresis, and Heat Source/Sink Using Cattaneo-Christov Heat Flux.
Indian Journal of Pure & Applied Physics,
60(8).
https://doi.org/10.56042/ijpap.v60i8.63440
[20] Yadav, P. K., & Yadav, N., 2023. Entropy generation analysis in micropolar-couple stress fluid’s flow in an inclined porous channel using Homotopy Analysis Method.
Chinese Journal of Physics,
86, pp. 469-496.
https://doi.org/10.1016/j.cjph.2023.10.024
[21] Padma Devi, M., Srinivas, S., & Vajravelu, K., 2024. Entropy generation in two-immiscible MHD flow of pulsating Casson fluid in a vertical porous space with Slip effects. Journal of Thermal Analysis and Calorimetry, 149(14), pp. 7449-7468.. https://doi.org/10.1007/s10973-024-13337-8
[22] Goyal, K., & Srinivas, S., 2024. Pulsatile flow of Casson hybrid nanofluid between ternary-hybrid nanofluid and nanofluid in an inclined channel with temperature-dependent viscosity.
Numerical Heat Transfer, Part A: Applications, pp. 1-30.
https://doi.org/10.1080/10407782.2024.2314735
[23] Yadav, P. K., Jaiswal, S., Verma, A. K., & Chamkha, A. J., 2023. Magnetohydrodynamics of immiscible Newtonian fluids in porous regions of different variable permeability functions.
Journal of Petroleum Science and Engineering,
220, 111113.
https://doi.org/10.1016/j.petrol.2022.111113
[24] Vyas, P., Kasana, R.K. and Gajanand, 2025. Entropy generation in free convective micropolar couple stress regime in vertical channel.
Numerical Heat Transfer, Part A: Applications, 86(10), pp.3033-3064.
https://doi.org/10.1080/10407782.2023.2299283
[25] Jat, K., Sharma, K., Choudhary, P., & Soni, P. (2025). Entropy generation analysis of couple stress Casson fluid flow through non-permeable stretching channel.
The European Physical Journal Special Topics, 1-20.
https://doi.org/10.1140/epjs/s11734-025-01525-y
[26] Vaishnav, B. K., Choudhary, S., Choudhary, P., Jat, K., Loganathan, K., & Eswaramoorthi, S., 2025. Computational analysis of radiative micropolar fluid flow over a curved stretching sheet with viscous dissipation.
Discover Applied Sciences,
7(5), 451.
https://doi.org/10.1007/s42452-025-06983-6
[27] Loganathan, K., Choudhary, P., Eswaramoorthi, S., Senthilvadivu, K., & Jain, R., 2025. Irreversibility analysis of bioconvective Walters’ B nanofluid flow over an electromagnetic actuator with Cattaneo-Christov model. Discover Applied Sciences, 7(5), 463. https://doi.org/10.1007/s42452-025-06893-7
[28] Vajravelu, K., Sreenadh, S., & Arunachalam, P. V., 1992. Combined free and forced convection in an inclined channel with permeable boundaries.
Journal of Mathematical analysis and Applications,
166(2), pp. 393-403.
https://doi.org/10.1016/0022-247X(92)90306-X
[29] Vajravelu, K., Arunachalam, P. V., & Sreenadh, S., 1995. Unsteady flow of two immiscible conducting fluids between two permeable beds.
Journal of mathematical analysis and applications,
196(3), pp. 1105-1116.
https://doi.org/10.1006/jmaa.1995.1463
[30] Avinash, K., Rao, J. A., Sreenadh, S., & Kumar, Y. R., 2011. Pulsatile flow of a viscous stratified fluid of variable viscosity between permeable beds. Journal of Porous Media, 14(12). DOI: 10.1615/JPorMedia.v14.i12.60
[31] Iyengar, T. K. V., & Bitla, P., 2013. Pulsating flow of an incompressible micropolar fluid between permeable beds with an imposed uniform magnetic field. Journal of Porous Media, 16(4). DOI: 10.1615/JPorMedia.v16.i4.30
[33] Bitla, P., & Iyengar, T. K. V., 2014. Pulsating flow of an incompressible micropolar fluid between permeable beds with an inclined uniform magnetic field.
European Journal of Mechanics-B/Fluids,
48, pp. 174-182.
https://doi.org/10.1016/j.euromechflu.2014.06.002
[34] Kumar, D., & Agarwal, M., 2021. MHD pulsatile flow and heat transfer of two immiscible couple stress fluids between permeable beds.
Kyungpook Mathematical Journal,
61(2), pp. 323-351.
https://doi.org/10.5666/KMJ.2021.61.2.323
[35] Mukherjee, S., & Shit, G. C., 2022. Mathematical modeling of electrothermal couple stress nanofluid flow and entropy in a porous microchannel under injection process.
Applied Mathematics and Computation,
426, 127110.
https://doi.org/10.1016/j.amc.2022.127110
[37] Stokes, V. K., 1984. Couple stresses in fluids. In Theories of fluids with microstructure: an introduction (pp. 34-80). Berlin, Heidelberg: Springer Berlin Heidelberg.
[38] Eringen, A. C., 1966. Theory of micropolar fluids. Journal of mathematics and Mechanics, pp. 1-18.
[39] Eringen, A. C., 2001. Microcontinuum field theories: II. Fluent media (Vol. 2). Springer Science & Business Media.
[40] Lukaszewicz, G., 2012. Micropolar fluids: theory and applications. Springer Science & Business Media.
[41] Stokes, V. K., 2012. Theories of fluids with microstructure: An introduction. Springer Science & Business Media.
[42] Goyal, K., & Srinivas, S., 2023. Entropy generation analysis for hydromagnetic two-layered pulsatile immiscible flow with Joule heating and first-order chemical reaction.
Case Studies in Thermal Engineering,
47, 103046.
https://doi.org/10.1016/j.csite.2023.103046