Thermal and Rheological Analysis of Elliptical Ducts and Non-Newtonian Nanofluids in Heat Exchanger Applications

Document Type : Full Length Research Article

Authors

1 Laboratory of Physical Engineering of Hydrocarbons, Faculty of Hydrocarbons and Chemistry, University M'hamed Bougara of Boumerdes, 35000, Boumerdes, Algeria

2 Laboratory of Energy and Mechanical Engineering (LEMI), Faculty of Technology, University M’Hamed Bougara of Boumerdes, 35000, Boumerdes, Algeria

3 Laboratory of Mechanical and Materials Development, LDMM, University of Djelfa, Djelfa 17000, Algeria

Abstract

This study numerically investigates the thermal and rheological performance of a double-pipe heat exchanger (DPHE) with an inner elliptical duct (with an aspect ratio of 0.25) using non-Newtonian nanofluids comprising multi-walled carbon nanotubes (MWCNTs) dispersed in water, stabilized with 0.2 wt.% cationic chitosan. Employing the finite volume method, we demonstrate that elliptical ducts significantly enhance heat transfer compared to circular tubes, increasing the number of transfer units (NTU) by up to 25% and effectiveness by 17%. The incorporation of MWCNTs further improves heat transfer by enhancing thermal conductivity, achieving up to 30% increase in NTU and 20% in effectiveness. Despite higher pressure losses in elliptical ducts, the shear-thinning behavior of the nanofluids mitigates these losses at higher flow rates, reducing pumping power requirements. These findings highlight the potential of combining elliptical ducts and non-Newtonian nanofluids to optimize DPHE efficiency, offering significant implications for energy-efficient heat exchanger designs in industrial applications.

Keywords

Main Subjects


[1]   Wijayanta, A.T., Yaningsih, I., Aziz, M., Miyazaki, T. and Koyama, S., 2018. Double-sided delta-wing tape inserts to enhance convective heat transfer and fluid flow characteristics of a double-pipe heat exchanger. Applied Thermal Engineering,. 145, p. 27-37. https://doi.org/10.1016/j.applthermaleng.2018.09.009
[2]   Dandoutiya, B.K. and Kumar, A., 2021. CFD analysis for the performance improvement of a double pipe heat exchanger with twisted tape having triangular cut. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, p. 1-19. https://doi.org/10.1080/15567036.2021.1946215
[3]   Gabir, M.M. and Alkhafaji, D., 2021. Comprehensive review on double pipe heat exchanger techniques. Journal of Physics: Conference Series, 1973(1), p. 012013. https://doi.org/10.1088/1742-6596/1973/1/012013
[4]   Huu-Quan, D., Rostami, A.M., Rad, M.S., Izadi, M., Hajjar, A. and Xiong, Q., 2021. 3D numerical investigation of turbulent forced convection in a double-pipe heat exchanger with flat inner pipe. Applied Thermal Engineering, 182, p.116106. https://doi.org/10.1016/j.applthermaleng.2020.116106
[5]   Zhang, L., Xiong, W., Zheng, J., Liang, Z. and Xie, S., 2021. Numerical analysis of heat transfer enhancement and flow characteristics inside cross-combined ellipsoidal dimple tubes. Case Studies in Thermal Engineering, 25, p.100937. https://doi.org/10.1016/j.csite.2021.100937
[6]   Córcoles, J.I., Moya-Rico, J.D., Molina, A.E. and Almendros-Ibáñez, J.A., 2020. Numerical and experimental study of the heat transfer process in a double pipe heat exchanger with inner corrugated tubes. International Journal of Thermal Sciences, 158, p.106526. https://doi.org/10.1016/j.ijthermalsci.2020.106526
[7]   Luo, C., Song, K. and Tagawa, T., 2021. Heat transfer enhancement of a double pipe heat exchanger by Co-Twisting oval pipes with unequal twist pitches. Case Studies in Thermal Engineering, 28, p. 101411. https://doi.org/10.1016/j.csite.2021.101411
[8]   Nakhchi, M.E., Hatami, M. and Rahmati, M., 2021. Experimental investigation of performance improvement of double-pipe heat exchangers with novel perforated elliptic turbulators. International Journal of Thermal Sciences, 168, p. 107057. https://doi.org/10.1016/j.ijthermalsci.2021.107057
[9]   Hashemi Karouei, S.H. and Mousavi Ajarostaghi, S.S., 2021. Influence of a curved conical turbulator on heat transfer augmentation in a helical double-pipe heat exchanger. Heat Transfer, 50(2), p. 1872-1894. https://doi.org/10.1002/htj.21960
[10] Noorbakhsh, M., Zaboli, M. and Mousavi Ajarostaghi, S.S., 2020. Numerical evaluation of the effect of using twisted tapes as turbulator with various geometries in both sides of a double-pipe heat exchanger. Journal of Thermal Analysis and Calorimetry, 140(3), p. 1341-1353. https://doi.org/10.1007/s10973-019-08509-w
[11] Nakhchi, M.E., Hatami, M. and Rahmati, M., 2021. Effects of CuO nano powder on performance improvement and entropy production of double-pipe heat exchanger with innovative perforated turbulators. Advanced Powder Technology, 32(8), p. 3063-3074. https://doi.org/10.1016/j.apt.2021.06.020
[12] Eastman, J.A., Choi, S.U.S., Li, S., Yu, W. and Thompson, L.J., 2001. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied physics letters, 78(6), pp.718-720. https://doi.org/10.1063/1.1341218
[13] Berrehal, H., Karami, R., Dinarvand, S., Pop, I. and Chamkha, A., 2024. Entropy generation analysis for convective flow of aqua Ag-CuO hybrid nanofluid adjacent to a warmed down-pointing rotating vertical cone. International Journal of Numerical Methods for Heat & Fluid Flow, 34(2), pp. 878-900. https://doi.org/10.1108/HFF-05-2023-0236
[14] Behrouz, M., Dinarvand, S., Yazdi, M.E., Tamim, H., Pop, I. and Chamkha, A.J., 2023. Mass-based hybridity model for thermomicropolar binary nanofluid flow: first derivation of angular momentum equation. Chinese Journal of Physics, 83, pp.165-184. https://doi.org/10.1016/j.cjph.2023.03.006
[15] Awan, A.U., Majeed, S., Ali, B. and Ali, L., 2022. Significance of nanoparticles aggregation and Coriolis force on the dynamics of Prandtl nanofluid: The case of rotating flow. Chinese Journal of Physics, 79, pp. 264-274. https://doi.org/10.1016/j.cjph.2022.07.008
[16] Ali, B., Ahammad, N.A., Awan, A.U., Oke, A.S., Tag-ElDin, E.M., Shah, F.A. and Majeed, S., 2022. The dynamics of water-based nanofluid subject to the nanoparticle’s radius with a significant magnetic field: The case of rotating micropolar fluid. Sustainability, 14(17), p. 10474. https://doi.org/10.3390/su141710474
[17] Noorbakhsh, M., Ajarostaghi, S.S.M., Zaboli, M. and Kiani, B., 2022. Thermal analysis of nanofluids flow in a double pipe heat exchanger with twisted tapes insert in both sides. Journal of Thermal Analysis and Calorimetry, 147(5), p. 3965-3976. https://doi.org/10.1007/s10973-021-10738-x
[18] Bahmani, M.H., Akbari, O.A., Zarringhalam, M., Ahmadi Sheikh Shabani, G. and Goodarzi, M., 2020. Forced convection in a double tube heat exchanger using nanofluids with constant and variable thermophysical properties. International Journal of Numerical Methods for Heat & Fluid Flow, 30(6), pp. 3247-3265. https://doi.org/10.1108/HFF-01-2019-0017
[19] Arabpour, A., Karimipour, A. and Toghraie, D., 2018. The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (MWCNTs) nanofluid in the microchannel heat sink with slip boundary condition. Journal of Thermal Analysis and Calorimetry, 131(2), p. 1553-1566. https://doi.org/10.1007/s10973-017-6649-x
[20] Zadkhast, M., Toghraie, D. and Karimipour, A., 2017. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. Journal of Thermal Analysis and Calorimetry, 129(2), p. 859-867. https://doi.org/10.1007/s10973-017-6213-8
[21] Ragueb, H. and Mansouri, K., 2019. Numerical investigation of laminar forced convection for a non-Newtonian nanofluids flowing inside an elliptical duct under convective boundary condition. International Journal of Numerical Methods for Heat & Fluid Flow, 29(1), p. 334-364. https://doi.org/10.1108/HFF-02-2018-0055
[22] Akbar, N.S., Zamir, T., Noor, T., Muhammad, T. and Ali, M.R., 2024. Heat transfer enhancement using ternary hybrid nanofluid for cross-viscosity model with intelligent Levenberg-Marquardt neural networks approach incorporating entropy generation. Case Studies in Thermal Engineering, 63, p.105290. https://doi.org/10.1016/j.csite.2024.105290
[23] Akbar, N.S., Akram, J., Hussain, M.F., Maraj, E.N. and Muhammad, T., 2024. Thermal storage study and enhancement of heat transfer through hybrid Jeffrey nanofluid flow in ducts under peristaltic motion with entropy generation. Thermal Science and Engineering Progress, 49, p. 102463. https://doi.org/10.1016/j.tsep.2024.102463
[24] Moradi, A., Toghraie, D., Isfahani, A.H.M. and Hosseinian, A., 2019. An experimental study on MWCNT–water nanofluids flow and heat transfer in double-pipe heat exchanger using porous media. Journal of Thermal Analysis and Calorimetry, 137(5), pp. 1797-1807. https://doi.org/10.1007/s10973-019-08076-0
[25] Hashemi Karouei, S.H., Ajarostaghi, S.S.M., Gorji-Bandpy, M. and Hosseini Fard, S.R., 2021. Laminar heat transfer and fluid flow of two various hybrid nanofluids in a helical double-pipe heat exchanger equipped with an innovative curved conical turbulator: SH Hashemi Karouei et al. Journal of Thermal Analysis and Calorimetry, 143(2), pp. 1455-1466. https://doi.org/10.1007/s10973-020-09425-0
[26] Fathian, F., Mirjalily, S.A.A., Salimpour, M.R. and Oloomi, S.A.A., 2020. Experimental investigation of convective heat transfer of single and multi-walled carbon nanotubes/water flow inside helical annuli. Journal of Enhanced Heat Transfer, 27(3), p. 195-206. https://doi.org/10.1615/JEnhHeatTransf.2020032605
[27] Zainith, P. and Mishra, N.K., 2021. A Comparative Study on Thermal-Hydraulic Performance of Different Non-Newtonian Nanofluids Through an Elliptical Annulus. Journal of Thermal Science and Engineering Applications, 13(5) p. 051027. https://doi.org/10.1115/1.4050235
[28] Zainith, P. and Mishra, N.K., 2021. Experimental Investigations on Stability and Viscosity of Carboxymethyl Cellulose (CMC)-Based Non-Newtonian Nanofluids with Different Nanoparticles with the Combination of Distilled Water. International Journal of Thermophysics, 42(10), p. 137. https://doi.org/10.1007/s10765-021-02890-1
[29] Zainith, P. and Mishra, N.K., 2021. Experimental investigations on heat transfer enhancement for horizontal helical coil heat exchanger with different curvature ratios using carboxymethyl cellulose-based non-Newtonian nanofluids. Heat Transfer Research, 52(16), p. 49-67. https://doi.org/10.1615/HeatTransRes.2021038864
[30] Zainith, P. and Mishra, N.K., 2022. Evaluation of Thermal Performance of Conically Shaped Micro Helical Tubes Using Non-Newtonian Nanofluids–A Numerical Study. Journal of Thermal Science and Engineering Applications, 14(8), p. 081019. https://doi.org/10.1115/1.4054643
[31] Namburu, P.K., Kulkarni, D.P., Misra, D. and Das, D.K., 2007. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Experimental Thermal and Fluid Science, 32(2), pp. 397-402. https://doi.org/10.1016/j.expthermflusci.2007.05.001
[32] Teipel, U. and Förter-Barth, U., 2001. Rheology of nano-scale aluminum suspensions. Propellants, Explosives, Pyrotechnics, 26(6), p. 268-272. https://doi.org/10.1002/1521-4087(200112)26:6<268::aid-prep268>3.0.co;2-l
[33] Chen, H., Witharana, S., Jin, Y., Kim, C. and Ding, Y., 2009. Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology. Particuology, 7(2), pp. 151-157. https://doi.org/10.1016/j.partic.2009.01.005
[34] Chandrasekar, M., Suresh, S. and Chandra Bose, A., 2010. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Experimental Thermal and Fluid Science, 34(2), p. 210-216. https://doi.org/10.1016/j.expthermflusci.2009.10.022
[35] Chen, H., Yang, W., He, Y., Ding, Y., Zhang, L., Tan, C., Lapkin, A.A. and Bavykin, D.V., 2008. Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids). Powder technology, 183(1), pp. 63-72. https://doi.org/10.1016/j.powtec.2007.11.014
[36] Phuoc, T.X. and Massoudi, M., 2009. Experimental observations of the effects of shear rates and particle concentration on the viscosity of Fe2O3–deionized water nanofluids. International Journal of Thermal Sciences, 48(7), p. 1294-1301. https://doi.org/10.1016/j.ijthermalsci.2008.11.015
[37] Chen, H., Ding, Y., Lapkin, A. and Fan, X., 2009. Rheological behaviour of ethylene glycol-titanate nanotube nanofluids. Journal of nanoparticle research, 11(6), pp. 1513-1520. https://doi.org/10.1007/s11051-009-9599-9
[38] Hojjat, M., Etemad, S.G., Bagheri, R. and Thibault, J., 2011. Rheological characteristics of non-Newtonian nanofluids: experimental investigation. International Communications in Heat and Mass Transfer, 38(2), pp. 144-148. https://doi.org/10.1016/j.icheatmasstransfer.2010.11.019
[39] Garg, P., Alvarado, J.L., Marsh, C., Carlson, T.A., Kessler, D.A. and Annamalai, K., 2009. An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. International Journal of Heat and Mass Transfer, 52(21-22), pp. 5090-5101. https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.029
[40] Phuoc, T.X., Massoudi, M. and Chen, R.H., 2011. Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan. International Journal of Thermal Sciences, 50(1), pp. 12-18. https://doi.org/10.1016/j.ijthermalsci.2010.09.008
[41] Ding, Y., Alias, H., Wen, D. and Williams, R.A., 2006. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer, 49(1-2), pp. 240-250. https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009
[42] Ko, G.H., Heo, K., Lee, K., Kim, D.S., Kim, C., Sohn, Y. and Choi, M., 2007. An experimental study on the pressure drop of nanofluids containing carbon nanotubes in a horizontal tube. International journal of heat and mass transfer, 50(23-24), pp. 4749-4753. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.029
[43] Mostafizur, R.M., Aziz, A.A., Saidur, R., Bhuiyan, M.H.U. and Mahbubul, I.M., 2014. Effect of temperature and volume fraction on rheology of methanol based nanofluids. International Journal of Heat and Mass Transfer, 77, pp. 765-769. https://doi.org/10.1016/j.ijheatmasstransfer.2014.05.055
[44] Aladag, B., Halelfadl, S., Doner, N., Maré, T., Duret, S. and Estellé, P., 2012. Experimental investigations of the viscosity of nanofluids at low temperatures. Applied energy, 97, pp. 876-880. https://doi.org/10.1016/j.apenergy.2011.12.101
[45] Ding, Y., Chen, H., He, Y., Lapkin, A., Yeganeh, M., Šiller, L. and Butenko, Y.V., 2007. Forced convective heat transfer of nanofluids. Advanced Powder Technology, 18(6), pp.813-824. https://doi.org/10.1163/156855207782515021
[46] Mahbubul, I.M., Khaleduzzaman, S.S., Saidur, R. and Amalina, M.A., 2014. Rheological behavior of Al2O3/R141b nanorefrigerant. International Journal of heat and Mass transfer, 73, pp. 118-123. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.073
[47] Ragueb, H. and Mansouri, K., 2013. A numerical study of viscous dissipation effect on non-Newtonian fluid flow inside elliptical duct. Energy Conversion and Management, 68, p. 124-132. https://doi.org/10.1016/j.enconman.2012.12.031
[48] Maia, C.R.M., Aparecido, J.B. and Milanez, L.F., 2006. Heat transfer in laminar flow of non-Newtonian fluids in ducts of elliptical section. International Journal of Thermal Sciences, 45(11), pp. 1066-1072. https://doi.org/10.1016/j.ijthermalsci.2006.02.001
[49] Ragueb, H. and Mansouri, K., 2018. An analytical study of the periodic laminar forced convection of non-Newtonian nanofluid flow inside an elliptical duct. International Journal of Heat and Mass Transfer, 127, pp. 469-483. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.051
[50] Ragueb, H. and Mansouri, K., 2023. Exact solution of the Graetz–Brinkman problem extended to non-Newtonian nanofluids flow in elliptical microchannels. Journal of Engineering Mathematics, 140(1), p. 10. https://doi.org/10.1007/s10665-023-10267-6
[51] Abdel-Wahed, R.M., Attia, A.E. and Hifni, M.A., 1984. Experiments on laminar flow and heat transfer in an elliptical duct. International journal of heat and mass transfer, 27(12), pp. 2397-2413. https://doi.org/10.1016/0017-9310(84)90098-X
[52] Javeri, V., 1976. Analysis of laminar thermal entrance region of elliptical and rectangular channels with Kantorowich method. Wärme-Und Stoffübertragung, 9(2), pp. 85-98. https://doi.org/10.1007/bf01589462
[53] Matos, R.S., Laursen, T.A., Vargas, J.V.C. and Bejan, A., 2004. Three-dimensional optimization of staggered finned circular and elliptic tubes in forced convection. International Journal of Thermal Sciences, 43(5), pp. 477-487. https://doi.org/10.1016/j.ijthermalsci.2003.10.003
[54] Matos, R.S., Vargas, J.V.C., Laursen, T.A. and Bejan, A., 2004. Optimally staggered finned circular and elliptic tubes in forced convection. International Journal of Heat and Mass Transfer, 47(6-7), pp. 1347-1359. https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.015
[55] Li, Z., Davidson, J.H. and Mantell, S.C., 2006. Numerical simulation of flow field and heat transfer of streamlined cylinders in cross flow. Journal of Heat Transfer, 128(6), p. 564-570. https://doi.org/10.1115/1.2188463
[56] Ibrahim, T.A. and Gomaa, A., 2009. Thermal performance criteria of elliptic tube bundle in crossflow. International Journal of Thermal Sciences, 48(11), pp. 2148-2158. https://doi.org/10.1016/j.ijthermalsci.2009.03.011
[57] Mohanan, A.K., Prasad, B.V. and Vengadesan, S., 2021. Flow and heat transfer characteristics of a cross-flow heat exchanger with elliptical tubes. Heat Transfer Engineering, 42(21), pp. 1846-1860. https://doi.org/10.1080/01457632.2020.1826742
[58] Chien, L.H., Chen, D.C., Liu, Y.J., Yan, W.M. and Ghalambaz, M., 2021. Heat and mass transfer of evaporative cooler with elliptic tube heat exchangers-an experimental study. International Communications in Heat and Mass Transfer, 127, p. 105502. https://doi.org/10.1016/j.icheatmasstransfer.2021.105502
[59] Patankar, S., 2018. Numerical heat transfer and fluid flow. Taylor & Francis, CRC press.
[60] Chhabra, R.P. and Patel, S.A., 2025. Non-Newtonian flow and applied rheology: engineering applications. Elsevier.
[61] Eymard, R., Gallouët, T. and Herbin, R., 2000. Finite volume methods. Handbook of numerical analysis, 7, pp. 713-1018.
[62] Shah, R.K. and Sekulic, D.P., 2003. Fundamentals of heat exchanger design. John Wiley & Sons.
[63] Tahiri, A., Ragueb, H., Moussaoui, M., Mansouri, K., Guerraiche, D. and Guerraiche, K., 2024. Heat transfer and entropy generation in viscous-joule heating MHD microchannels flow under asymmetric heating. International Journal of Numerical Methods for Heat & Fluid Flow, 34(10), pp. 3953-3978. https://doi.org/10.1108/HFF-05-2024-0380
[64] Ragueb, H., Tahiri, A., Behnous, D., Manser, B., Rachedi, K. and Mansouri, K., 2023. Irreversibilities and heat transfer in magnetohydrodynamic microchannel flow under differential heating. International Communications in Heat and Mass Transfer, 149, p. 107155. https://doi.org/10.1016/j.icheatmasstransfer.2023.107155
[65] Rachedi, K., Ragueb, H., Behnous, D., Tahiri, A., Manser, B. and Ait Chikh, M.A., 2026. Analysis of natural convection heat transfer in a rectangular cavity with discrete heat flux: Implications for building thermal management using artificial neural networks. Numerical Heat Transfer, Part B: Fundamentals, 87(1), p. 2389215. https://doi.org/10.1080/10407790.2024.2389215
[66] Chhabra, R.P., 2010. Non-Newtonian fluids: an introduction. In Rheology of complex fluids (pp. 3-34). New York, NY: Springer New York.
[67] Bennett, T.D., 2019. Correlations for the Graetz problem in convection–Part 1: For round pipes and parallel plates. International Journal of Heat and Mass Transfer, 136, pp. 832-841. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.006